Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Transcriptomics in Health and Disease, Second Edition ; : 395-435, 2022.
Article in English | Scopus | ID: covidwho-2301705

ABSTRACT

Mycoses are infectious diseases caused by fungi, which incidence has increased in recent decades due to the increasing number of immunocompromised patients and improved diagnostic tests. As eukaryotes, fungi share many similarities with human cells, making it difficult to design drugs without side effects. Commercially available drugs act on a limited number of targets and have been reported fungal resistance to commonly used antifungal drugs. Therefore, elucidating the pathogenesis of fungal infections, the fungal strategies to overcome the hostile environment of the host, and the action of antifungal drugs is essential for developing new therapeutic approaches and diagnostic tests. Large-scale transcriptional analyses using microarrays and RNA sequencing (RNA-seq), combined with improvements in molecular biology techniques, have improved the study of fungal pathogenicity. Such techniques have provided insights into the infective process by identifying molecular strategies used by the host and pathogen during the course of human mycoses. This chapter will explore the latest discoveries regarding the transcriptome of major human fungal pathogens. Further we will highlight genes essential for host–pathogen interactions, immune response, invasion, infection, antifungal drug response, and resistance. Finally, we will discuss their importance to the discovery of new molecular targets for antifungal drugs. © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2014, 2022.

2.
Life (Basel) ; 12(2)2022 Feb 15.
Article in English | MEDLINE | ID: covidwho-1686871

ABSTRACT

The current SARS-CoV-2 pandemic has emerged as an international challenge with strong medical and socioeconomic impact. The spectrum of clinical manifestations of SARS-CoV-2 is wide, covering asymptomatic or mild cases up to severe and life-threatening complications. Critical courses of SARS-CoV-2 infection are thought to be driven by the so-called "cytokine storm", derived from an excessive immune response that induces the release of proinflammatory cytokines and chemokines. In recent years, non-coding RNAs (ncRNAs) emerged as potential diagnostic and therapeutic biomarkers in both inflammatory and infectious diseases. Therefore, the identification of SARS-CoV-2 miRNAs and host miRNAs is an important research topic, investigating the host-virus crosstalk in COVID-19 infection, trying to answer the pressing question of whether miRNA-based therapeutics can be employed to tackle SARS-CoV-2 complications. In this review, we aimed to directly address ncRNA role in SARS-CoV-2-immune system crosstalk upon COVID-19 infection, particularly focusing on inflammatory pathways and cytokine storm syndromes.

3.
Cells ; 10(10)2021 09 23.
Article in English | MEDLINE | ID: covidwho-1438524

ABSTRACT

The ability of the ribonucleic acid (RNA) to self-replicate, combined with a unique cocktail of chemical properties, suggested the existence of an RNA world at the origin of life. Nowadays, this hypothesis is supported by innovative high-throughput and biochemical approaches, which definitively revealed the essential contribution of RNA-mediated mechanisms to the regulation of fundamental processes of life. With the recent development of SARS-CoV-2 mRNA-based vaccines, the potential of RNA as a therapeutic tool has received public attention. Due to its intrinsic single-stranded nature and the ease with which it is synthesized in vitro, RNA indeed represents the most suitable tool for the development of drugs encompassing every type of human pathology. The maximum effectiveness and biochemical versatility is achieved in the guise of non-coding RNAs (ncRNAs), which are emerging as multifaceted regulators of tissue specification and homeostasis. Here, we report examples of coding and ncRNAs involved in muscle regeneration and discuss their potential as therapeutic tools. Small ncRNAs, such as miRNA and siRNA, have been successfully applied in the treatment of several diseases. The use of longer molecules, such as lncRNA and circRNA, is less advanced. However, based on the peculiar properties discussed below, they represent an innovative pool of RNA biomarkers and possible targets of clinical value.


Subject(s)
MicroRNAs/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , RNA, Messenger/metabolism , RNA, Untranslated/genetics , Regeneration , Animals , Biomarkers/metabolism , COVID-19 , Homeostasis , Humans , Mice , Muscle, Skeletal/virology , Myocardium/metabolism , Origin of Life , RNA, Circular , RNA, Long Noncoding/genetics , RNA, Small Interfering/metabolism , RNA, Small Untranslated/genetics , RNA, Viral/metabolism , SARS-CoV-2/genetics
4.
Brief Funct Genomics ; 20(1): 28-41, 2021 03 02.
Article in English | MEDLINE | ID: covidwho-1045889

ABSTRACT

The human genome has an almost equal distribution of unique and transposable genetic elements. Although at the transcriptome level, a relatively higher contribution from transposable elements derived RNA has been reported. This is further highlighted with evidence from pervasive transcription. Of the total RNA, noncoding RNAs (ncRNAs) are significant contributors to the transcriptome pool with sizeable fraction from repetitive elements of the human genome, inclusive of Long Interspersed Nuclear Elements (LINEs) and Short Interspersed Nuclear Elements (SINEs). ncRNAs are increasingly being implicated in diverse functional roles especially during conditions of stress. These stress responses are driven through diverse mediators, inclusive of long and short ncRNAs. ncRNAs such as MALAT1, GAS5, miR-204 and miR-199a-5p have been functionally involved during oxidative stress, endoplasmic reticulum (ER) stress and unfolded protein response (UPR). Also, within SINEs, Alu RNAs derived from primate-specific Alu repeats with ~11% human genome contribution, playing a significant role. Pathogenic diseases, including the recent COVID-19, leads to differential regulation of ncRNAs. Although, limited evidence suggests the need for an inquest into the role of ncRNAs in determining the host response towards pathogen challenge.


Subject(s)
Infections/genetics , RNA, Untranslated/physiology , COVID-19/genetics , COVID-19/virology , Cytokines/physiology , Endoplasmic Reticulum Stress , Host-Pathogen Interactions , Humans , Infections/metabolism , Long Interspersed Nucleotide Elements , Oxidative Stress , RNA, Untranslated/genetics , SARS-CoV-2/isolation & purification , Short Interspersed Nucleotide Elements , Unfolded Protein Response
SELECTION OF CITATIONS
SEARCH DETAIL